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Abstract—Dynamic responses of beams on generalised elastic foundations is studied using the method of
Initial parameters. The foundation model proposed by Viasov and Leontev is modified by incorporating in the
analysis the horizontal displacements in the elastic foundation thus making it more general and physically
close to the actual situation. Results are compared with those reported by Rades, using Pasternak’s
foundation model and Winkler’s model. The insufficiency of the Winkler's mode! in the study of dynamic
responses (mainly the bending moments) is emphasized, Solutions presented are quite general for application
to beams on generalised elastic foundations subjected to arbitrary external dynamic loads and (or) moments.

NOTATION

E,I modulus of rigidity of the beam
E, v elastic constants of the foundation medium
F, F; auxiliary functions
H thickness of the foundation layer
{I,} matrix of initial parameters (Eq. (25))
[K] matrix of Influence function (Eq. (25))
L characteric length (Eq. (18¢)).
M bending moment of the beam
N, generalised shear
P concentrated dynamic load, Pee
Q beam shear
{R} matrix of responses (Eq. 25)).
T, S, generalised forces (Eqns. (7))
_ U, W, generalised displacements (Eqns. (1))
W, M, Q,G dimensionless responses (Eqns. (42), (43))
W*, M* static deflection and bending moment at the centre of the beam
a, dimensionless frequency ratio (Eqns. (18)}
b, dimensionless mass ratic (Egns. (I18)
g* acceleration due to gravity
{ half length of the beam
m, mass of the beam per unit length of beam
p,q surface loads on the foundation
q. uniformly distributed dynamic load, g, e
q¢* general dynamic load on the beam
u, w displacement components {(Eqns. (1))
w, vertical deflection of the beam
X, ¥,z cartesian coordinates
t time variable
Q frequency ratio (Eq. (44))
® operating frequency
¢, Yo dimensionless functions (Eq. (1))
vy parameter depending on elastic properties of foundation
& lateral thickness of the plane elastic body (Fig. 1)
n=x/L dimensionless parameter
Oy, Oy T, SITESSES
p unit weight of foundation material
p» unit weight of beam material
{a} non-homogeneous part of the responses (Eq. (26b))
A =yL dimensionless parameter.
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I. INTRODUCTION

The analysis of structures on elastic foundations is of considerable interest in several fields such
as foundation engineering, aero-space structures etc. The earliest mathematical idealisation of a
foundation medium was due to Winkler[1] which is a single parameters model. Kerr[2] has given
a comprehensive review of the various foundation models generally used in these problems. The
foundation models proposed by Vlasov and Leontev[3], Pasternak, Wieghardt, Filonenko-
Borodich{2] are essentially two parameter models which have been reported to give better
performance when compared to Winkler’s model[2]. Among all the two parameter foundation
models, Vlasov and leontev’s model seems to be more advantageous because of the fact that the
parameters characterising the medium have been expressed explicitly in terms of physically
realisable material properties of the foundation medium. Starting with the elastic continuum
equations, Kameswara Rao[4,5] modified the foundation model proposed by Vlasov and
Leontev[3], by incorporating in the analysis the horizontal displacements in the elastic
foundation, thus making the model more general, physically close, and yet mathematically
simple. Only static problems have been reported [4].

In a recent paper Rades[6] brought out the importance of the two parameter Pasternak’s
foundation model over the Winkler’s model by studying the steady state dynamic responses of
beams on such elastic foundations. He has shown, how, for the bending moments, the responses
using the Pasternak’s model are totally different from those obtained using Winkler’s model, and
observed that Winkler’s model leads to large errors in the frequency range of practical interest.
However he presented the results[6] neglecting the foundation inertia.

In the present investigation the dynamic responses of beams on generalised elastic
foundations has been studied using the analytical model developed by the authors[4, 5]. Method
of initial parameters has been presented thus facilitating the application of the solutions to
problems involving arbitrary, external, dynamic loads and (or) moments. Results have been
graphically compared with those reported by Rades[6]. A few typical results of the dynamic
responses of the beam—foundation system, taking into account the foundation inertia also, have
been graphically shown. “Geometric damping” implicitly exists in the present analysis because of
the semi-infiniteness of the foundation medium.

2. BASIC EQUATIONS

Referring to the plane elastic body (Fig. 1) of thickness H (finite or infinite) and lateral
thickness & the displacements can be expressed as

u(x, z,t)=Zl U(xt)di(2) )

wix, z,t)= 2 Wi x, D (z)

in which ¢:i(z) and yn(z) are a priori chosen dimensionless functions consistent with the
constraints of the problem[3, 4]; U, W, are referred to as generalised displacements and ¢ is the
time variable.

Using Vlasov’s general variational method[3] for the plane elasto-dynamic equations, the
equations governing the generalised displacements can be obtained as[3, 5]

m — m n — 1_2 .
S avi-(F) S hti+ 3 {m- 052 e wit Cgnmai=12. om0
i=1 i=1 k=1
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Fig. 1. Diagram showing the convention of stresses and displacements of plane elastic body.
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where primes denote derivatives with respect to x and

H
Q= A = fo (f);d)iﬁdZ', b}‘i = bij = dd)l d¢ 3d

o dz d
H
Frx ™ Fin :J ‘f/kif’hsdz;Snk = Skn = . (igkcgih 5d
Cp= f doy ddz; e = j P d¢ 8dz;
m-f @dwﬁd d%¢5d 3)

and
= p(x, D (0) + f Pt 2. )y dz

@ =atx O+ [ a0 0 a2 @

where p(x, t) and q(x, t) are the external surface loads acting along x and z directions
respectively. The body force components p(x, z, ) and g{x, z, t) in dynamic problems can be
interpreted as the intertial forces and can be written as

= _Es_a u _ _pddw
p(x,z,t) g at2$ q(x,Z,t) g*‘é_t’f (5)

where p is the unit weight of the material of the body and g* is the acceleration due to gravity.
The formulation for the plane-strain case is essentially the same but the elastic constants E, v
have to be replaced by E,, vo where

Eo=E/(1—-v%) and we=v/(1—-v) 6)
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The stresses o, and 7., at any cross-section x = constant can now be represented by 'm + n’
independent generalised forces as[§]

Ti(x, t) = f opiddz = a=m {2 a: U+ 2 t,ka} ,j=12..... m) (7a)

Sv5 1) =372 ){2 culi + Zr,,ka} (hk=12..... n). (7b)

T;(x, t) and S, (x, t) are referred to as generalised longitudinal and shearing forces respectively.
The required 2(m + n) boundary conditions to solve Eqns. (2), can now be prescribed in terms of
these generalised forces considering the foundation medium to be an elastic body the above
equations can be utilised directly to solve the beam foundation interaction problem.

3. DYNAMICS OF BEAM-FOUNDATION SYSTEM

An Euler-Bernoulli beam lying on an elastic foundation subjected to a dynamic load ¢ *(x, t) is
shown in Fig. 2. The differential equation for transverse vibration of the beam can be written as

2

3w 3
= a0 )= qlx ) - my ®

EI at

in which E,I, wo and m, are the modulus of rigidity, vertical deflection and mass per unit length of
the beam. m, can be expressed as

m, = ppSh[g* ®

where p, is the unit weight of the beam material and 4 is the height of the beam. Under
plane-strain conditions I in Eq. (8) has to be replaced by J which is given by

J=Il(1-v0) (10)

vy is the Poisson’s ratio of the material of the strip.
Assuming compatibility at the interface of the beam-foundation system, from Eq. (1),

wo= 2, Wi(x, )¢ (0) (1
k=1
g x )
0 fi i I 1 n
Z {
v
1 i | 9
i ]
1 ; bid : m
| l

Fig. 2. Finite beam on elastic foundation.
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From Egns. (8), (11}, (4) and (5)

@ = G*(x, DY (0) ZE.,I"’ B 4 0 0)

- ; m, -aa——fvzk'!,bk 04 (0)

B LH {2 ;’—i aa,W (2 (2) dz}

(h=12,....n). (12a)

From Eq. (§)

-p060- [ {582 60606
G=12....m). (12b)
Using Eqns. (12) and (3), Eqns. (2) can be written as

3 qui-42Y) ”) 3 bl + 2 {vt,k

i=1

3 ) Cjk} Wk

(=Y _p = U
g {p(x,t)éj(O) g*;“*" atz}'

(=12,....m) {13a)
and

- ; {Vthi “(1 ; v) Chi}U'i""‘(l;—V)kZ: ruWi

Z S Wi + ) { *(X H(0) — z EJI 9 ‘Yk i 0 (B

- m? Vﬁ’*m(owh(mw——zma W"}

th=12,..... n). (13b)

Eqgns. {13) are the general governing equations for the dynamic beam-foundation interaction
problem.

4, GENERAL EQUATIONS IN TERMS OF AUXILIARY FUNCTIONS
As the beam has been assumed to transfer only vertical forces to the foundation, p(x, t) in Eq.
(13a) will be zero. Choosing one function each for ¢(z) and ¢{(z) (ie. m = n = 1) such that
¢1(0) = ¢,(0) = 1, and taking the displacement components to be proportional to "' (where o is

the operating frequency) for steady state response of the beam foundation system, in the absence
of any other surface loads beyond the beam, Eqns. (13) can be expressed as

LU+ LW, =0 (14a)

_ .2
LU+ LW, = “(1 d )q* (14b)
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where U,, W, and g* are now functions of x only (as the responses and the external load are
proportional to ¢*). In Eqns. (14) Ly1, L, Lo, and L, are differential operators given by

d d
L]l_DIF+D2’ L]Z—DBE
d d* d’
Lzl—*Dga, Ln—DAd—x“+DSW+D6 (15)
in which
Di=a.; Dzz—{(];,})bu_klzan}:
- _ 2
D3={th‘( 21/)('”}; D4=*QE,L)EbI; (16)

D5=(1_2V) i, Dn:"(SH‘klzrll_kzz);

where a.., b, etc. are given by Eqn. (3) and

.2 2
k]z =(_1 leg%: anzlL2

3
and
. an
kzzzﬂ—E—V_)mhwz = b(,2(5”_,)

in which
do= ol —gﬂ*“;’ (18a)
bo= wL\/%“};f’ ) (18b)

13

L:{—__ZE'*ISS ”)} (18¢)

ao, bo and L can be referred to as dimensionless frequency ratio, dimensionless mass ratio and

characteristic length respectively.
Equations (14) can now be uncoupled by choosing an auxiliary function F such that

d
U] = _LuF = _D3(£) (193)
and

2
W.=L.1F=D1§TIZ+D2F (195)
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whereby Eqn. (14a) is automatically satisfied and Eqn. (14b) gives

d°F &°F
d 6+f1d 4+f2d 2+f3F f4q (20)
in which n = (x/L) = dimensionless parameter (21a)
= (DiDs+D.Ds\,, = _ (D,D6+ D2D5+D32) 4
F= (B T D.D. L (215)
(D2Ds) v 6. 7 _ L®
f;—- D D4 L fé_EbIan‘ (ZIC)

Eqn. (20) is the final equation governing the dynamic responses of the beam-foundation
system,

With the generalised displacements U, and W, and generalised slope Wi =(1/L)Wi(n), there
correspond the generalised longitudinal force T, and generalised shearing force N; (which is
distinct from the beam shear Q) given by

=Q+S, (22)

where S, is the generalised transverse shear in the foundation. T, and S, can be obtained from
Eqn. (7). In addition to these quantities, bending moment M of the beam and the soil reaction g at
the interface (from Eqns. (2b) and (5)) have also to be defined. Using Egn. (19), these can be
defined as

U, = — Dy(dF/dx) = du:(dF/dy) (a)
= D1(d2F{dX2)+D2F = dw;(sz!dT)Z) +dW’.’F (b)
Wi=(@W/dx)= dWPl(d3F/d7}3) + dwpz(dF/d"l)) {c)
Q = - E,,I(d3W1/dx3) = dQl(de/dns) + dqz(dsF/d"f) (d)
M = — EI(d*W,/dx®) = du(d*Fldn*) + duo(d*F [dn?) (e)
E au, o
T, = s (an G+ oW1 = dr@Fldn) + dnoF @) ®
_E dw, )
(e (cnU. +ry 2 ) ds(dF/dn’) + dsx(dFdn) @®
Ni=Q+ S =dni(d’Fldn®) + dno(d’ Fldn®) + dns(dF/dn) )
_E _ (- dU, (1-») m
q—(]—vz)[ {” nTTy ¢ } @2 Mae
_(Sn "klzrn)wl]

=d,(d*F/dn*) + doa(d*Fldn®) + dosF M
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where
dui=(=Ds/L); dwi=(D/JL%; dw2=Ds dwe,=(D/JL;
dwp2=(D:/L); dgi=-Du(E,I/L®); dg:=-DuAE,I/L%;

E (vtuDi—a,.Ds)

dM1=*D1(Eb”L4); duz = —Dz(EbI/LZ); dr =

(1-v9 L?

d:rz=Dth11E/(l—V2); ds| 2(1+ )(rJIDI/L )

E 5
ds2 = 0+ )(r”Dz cuDs)/L; dwi=dq =~ EID|/L (24)
dn2z=de2+d { E D — EID}/L
N2 Q2 81— 2(1+ ) 1t 1 b. 2
dns =d E ~——(ruD:—cuD3)/L; d (DsD\/L?)
N3 §2= 2(1+ ) 172 = L ls3 q1 = ( ) s s

E 2 2 2

dq2: —(1__2){D3 +D5D2_D1(sll_kl rl])}/L .

E
dqaz(—l_—vz)Dz(Sn—klz"ll)

5. DYNAMIC RESPONSES OF FINITE BEAMS ON ELASTIC FOUNDATIONS

The results of static responses of infinite beams and finite beams on generalised elastic
foundations as idealised by the proposed foundation model[4, 5] bring out the reliability of its
performance. The above equations reduce to static equations by omitting the time variable, ¢, (or
w =0), i.e. ki, k2, ao and b, equal to zero identically. Essentially following the same approach
applied to static problems[4, 5], the solutions to the dynamic responses of the beam-foundation
system have been briefly presented below using the method of initial parameters while a detailed
account of the method is discussed in references[4] and[5].

For the region I (Fig. 2), using the homogeneous solution of Eq. (20), the quantities U, to ¢
given by Eqn. (23) can be expressed in terms of the values of the generalised parameters W,, Wi,
U,, T,, M, and N, at any initial section say n =0, as[4].

W, [ Kii Ki» Kis Kis Kis Koo |

Wi K> Ky Ko Ko Kis Kag (Wi

Ul K;, Ksz Ki; K, K35 K (Wll)ﬁ

T: Ku K42 K43 K44 K45 K45 (Ul)ﬂ

M —{R}: Kjl Ksz Kss K54 Kss Kss (Tl)ﬂ :[K]{IP} (25)
N1 Ks: Kez K63 K64 Kss K66 (M)O

Q K7| K7z K73 K74 K'JS K'ic. (NI)O
‘q LKSI Ks; Kas Ksa Kes Kss N

K., to Kz are called influence functions and {I,} are called initial parameters. [K] forms a
matrix for direct linear transformation of {I,} into {R}. From the homogeneous solution of Eqn.
(20) and Eqns. (23), all the components [K] are completely known. Hence if the initial parameters
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{I,} are known the problem can be considered to be completely solved. In general, if at any
section n = s, the parameters (W,),, (W), (U))s, (T))s, (M),, and (N,), are known, they can be
taken as initial parameters. Then at any section 7, the quantities (Wi)n, (W1)a, (U, (T, (M),
(N1)., (Q)., and (q)., can be determined by the same influence functions K. to Kgs with the
argument (n — s) (since the section at which the quantities are to be evaluated is at a distance of
(n — s) from the initial section = s), provided the homogeneous equation of bending is valid
between these two sections, which means that there are no external loads and (or) moments etc.
applied in between the two-sections.

In case some external loads and (or) moments are applied, their effect will be to change the
values of some of the parameters W,, W1, U,, T\, M and N, (at the section where these external
influences have been applied) and hence have to be taken into account in writing the solutions
beyond the section where the external influences have been applied. Hence in the most general
case of a beam on an elastic foundation subjected to arbitrary external influences (however, in
the dynamic case, the operating frequency, w, has to be the same, while they can be discrete
concentrated or distributed loads and (or) moments etc.), the non-homogeneous solutions can be
written as

{R}=[K}L}—{a} (26a)
where {R}, [K], {I,} are defined by Eqn. (25) and
{a}T ={Fw1, Fwp, Fu\, Fr1, Fu, Fy, Fo, Fy} (26b)

in which the superscript “T” stands for the transposition of the matrix.

{a} can be obtained knowing [K] and the éxternally applied loads and (or) moments as
discussed in detail in Refs. [4] and [5] and represents the non-homogeneous part. From Eqns. (26),
the required dynamic responses can be obtained at any section of the beam provided the initial
parameters {I,} are known. These can be evaluated from the boundary conditions at the two ends
of the beam.

6. BONDARY CONDITIONS
Three practically important cases of end conditions of the beam can be studied.

6.1 Free end

In this case, the continuity conditions for the beam and the elastic foundation have to be
accounted for, in prescribing the boundary conditions. Accordingly, W,, U,, T, and N, are seen
to be compatible with the corresponding quantities of the foundation at each free end of the
beam. Also the bending moment, M at each free end is zero.

6.2 Simply supported end
Boundary conditions in this case are W, = U, = M =0 at the simply supported end.

6.3 Fixed or built-in end
In this case of a fixed end, W= Wi=U,=0.
Any combination of these end conditions can be similarly analysed.

7. FINITE BEAM WITH FREE ENDS

Referring to Fig. 2 of a finite beam on elastic foundation subjected to arbitrary external
dynamic loads, the responses of part II of the beam-foundation system are governed by Eq. (20),
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while the responses of the free part I and III of the foundation (beyond the beam) are governed
by Eqns. (2). As already noted, with one function each for ¢(z) and ¢(z) i.e. (m = n = 1) such
that ¢.(0) = ¢(0) = 1, and taking the displacements proportional to ¢**, Eqns. (2) get uncoupled
by substituting for U, and W, from Eqns. (19). Using the auxiliary function F; in the place of F to
designate the solution for the free parts of the foundation, (and noting that there are no other
external surface loads on the foundation) the resulting equation can be obtained as

&F o~ &F A
dn4+C1 dn2+C2Ff-0 27
where
Cl = (Dsz +D,Ds+ D7D1)L2/(D|D5) (28)

éz - D2D7L4/(D1D5)
where D, to Ds are given by Eqns. (16) and
D;=—(su—ki’an) (29)

and L is the characteristic length given by Eqn. (18c), 7 is the dimensionless parameter given by
Eqn. (21a).

The solution of Eqn. (27) depends on the nature of characteristic roots. Only three cases of
solutions depending on the range of parameters involved are discussed below while all other
cases are dealt in Appendix A. While no results are reported Rades[6] also fixes the ranges over
which physically feasible solutions for the free part of the foundation are possible.

Case 1

The characteristic roots of Eqn. (27) are real and unequal.

Keeping in view the boundedness of the responses as 1 = «, the physically feasible solutions
can be written as

Fi(n)= A"+ Ae™ " forn <0 (30a)
= Ase ™"+ Age ™ for n =0 (30b)

in which ri,, m. are positive quantities given by

ﬁl],::{(_cli\/C|2—4C2)/2}”2 (31)

and A, to A, are arbitrary constants.

Case 2
The characteristic roots of Eqn. (27) are real and equal. The physically feasible solutions in

this case can be written as

Fi(n)=(A+ Asnp)e™ forn <0 (32a)
=(As+ Am)e ™ forn =0 (32b)
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where i, is given by
o= (-C/2)"" (33)

and A, to A, are arbitrary constants.

Case 3

The characteristic roots of Eqn. (27) are complex conjugate with non-zero real part.

This happens if (C,> —4C>) is negative and C, is not equal to zero. For all practically possible
ranges of parameters it is noted that C,>—4C, is always positive and hence, while physically
feasible solutions can be obtained in this case, they seem to be of academic interest only.

In the examples illustrated below, the nature of the roots are observed to belong to either case
1 or case 2. However, for certain ranges of parameters, other types of characteristic roots for the
Eqn. (27) are possible and those are briefly discussed in Appendix A.

Using these solutions, the displacements and forces W,, U, T\, and S, of the free parts of the
foundation (parts I and III in Fig. 2) can be evaluated from Eqns. (23a, b, f and g) and it is to be
noted that the function F to be substituted in these equations is the homogeneous solution F; of
Eqn. (27) as given by Eqns. (30} or (32) or other appropriate forms depending on the characteristic
roots of Eqn. (27). However for part II of the foundation beneath the beam, W,, U,, T, and N,
can be obtained (Eqns. (25) and (26)) from the same equations, function F being the solution of
Eqn. (20).

From the coatinuity conditions of the forces and displacements, the boundary conditions at
each free end can be written as (depending on the end)

(Wi =(Wih or (W, (Uu=U or (Udm
(Tou=(Th or (THu;, (Nu=(Sh or (SI)III (34)

and bending moment M =0.

Using the appropriate solution for F; (as given by Eqns. (30) and 32)) in Eqns. (23a, b, f and g),
and taking the origin (Fig. 2) at the left hand end of the beam the initial parameters can now be
expressed from Eqns_. (34) as

(Wi)o AHw,+ AzHw
(Wi (W
(U)o _ A Hu,+ AHy:
(Too[~ =) A Hp + ALH 33)
(M)o 0
(NI)OZ(SI)O AHs,+ A;Hs:

Taking *“21” as the length of the beam, at the other end n = 21/L, in order to make use of the
continuity and boundary conditions given by Eqns. (34), the corresponding quantities can be
expressed depending on the nature of solution F; as follows:

(Wi (AsHw, = AsHw2)

(U2 —(AsHy, = A4sHu2)

(T2 =3 (AsHr1= AHr) 36)
(M)ai 0

(NDaie = (S —(AsHs\ = AsHs»)
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In the right hand side expressions in Eqn. (36), the upper positive sign should be taken in case
the solutions of the free part of the foundation, F;, are of the form given by Eqns. (30) and the
lower negative sign in case F; is of the form given by Eqns. (32). The Expressions Hw, etc. also
depend on the nature of solution of F; and can be obtained as below.

Case 1
F; is of the form given by Eqns. (30).
Hy: = dw1"—112 +dwz; Hwz2= dw1"—122 +dwz2; Huir=duimiy;
Hy.=duihiz; Hri = d'nn_’l]z +dr2; Hre= dTlmZZ +dr2; 37

Hs, = dslm13 +ds2it; Hsz= ds1'7-123 + dsaa;
where dw, etc. are given by Eqns. (24) and ra,, m, are given by Egns. (31).

Case 2
F; is of the form given by Eqns. (32).

Hwi = dwiio’ +dwa; Hwa=2dwie; Hui= dy. g
Hy:=dy; Hri= d71m02+ dr2; Hpx= 2d1‘1"_10; (38)

Hs, = d51m03 +ds2to; Hs:= 3dsnm02 +ds2

in which dw, etc. are given by Eqns. (24) and i, is given by Eqn. (33).
Similar expressions can be obtained in case of other feasible forms of the solution for F,.
Finally from the general solutions given by Eqn. (26) for the steady state dynamic responses
of beams on generalised elastic foundations subjected to arbitrary external influences, and from
Eqns. (35) and (36), the required number of equations to solve for the hitherto unknown
quantities A, A,, A, As and (W1), can be written as

AHw,+ A-H
Ki Ki2 Kis Kus Kis Ko “woe
1
K31 K32 K33 K34 K35 K36 AIHU1+A2HU2
Ko Ke Kis Kus Kis Kuo AHo+AH
KSI K52 K53 K54 KSS K56 e 0 o

K1 Ke: Kes Koy Keos Kes . :% A,Hs: + A-Hs,

A}HW1 i'A4Hw2 FWI
—(AsHy, = A:Hy,) Fy,
- A}H’m + A4H’1‘2 = FTI (39)
0 Fu
_(A3Hs1 + A4Hsz) FNI T) — ZI/L.

In the left hand side expressions of Eqn. (39), as indicated earlier, the upper positive sign
should be taken in case F; is given by Eqn. (30) and lower negative sign in case F; is given by Eqn.
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{32). The components of [K] and the non-homogeneous components Fw,, Fy, etc. at n =2//L
are completely known as explained above in Section 5. Thus Eqns. (39) result in five equations in
the five unknowns, A,, Az, As, Asand (W), which can be uniquely solved. Knowing these, the
initial parameters, {I,} can be obtained as given by Eqgns. (35). Once {I,} are known, the solutions
for region II (Fig. 2) of the beam~foundation system are completely known at any 7, as given by
Eqgns. (26}, while the solutions for the free parts I and III (Fig. 2) of the foundation can be
obtained from Eqns. (23) by the appropriate substitution of F; as given by Eqgns. (30) and (32).
(The solutions for F; are completely known since the constants A, to A, can be solved from Eqns.
(39)).

8. SIMPLY SUPPORTED AND FIXED BEAMS
In these cases the foundations do not extend beyond the beam ends and prescribing the

necessary boundary conditions as mentioned in Section 6, solutions can be obtained [5] using Eqns.
(26).

9. ILLUSTRATIONS AND RESULTS

While the solutions presented in the above analysis are quite general a few cases have been
illustrated below.
Choosing the displacement distribution functions as

dlz)=d(z)=¢" (40)
and defining the dimensionless parameter,

A =vL, 4n
The responses have been presented for two types of loading.

Case 1
Concentrated dynamic load P = P,e™ acting at the mid span of the beam.
In this case the responses have been expressed as

iwt

(- VZ)Poeiwt

Wg(?)) = E8

W M(n)=IPee™M;

iwmt
Pe™ @2)

Q(m)=Poe™Q; q(n)=

in which “I” is the half length of the beam.

Case 2

Uniformly distributed dynamic load q. = gee™* acting on the entire length of the beam.
In this case the responses have been expressed as

A1 -v9)

Wi(n) = Es

qﬂeith; M(n):IZQOeimtﬁ’-{

Q1) =1ge™'Q; g(n) = qoe™'q. 43)
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For a few typical values of A, I/L, v, ao and b, the dimensionless dynamic responses W, M, Q
and g have been graphically shown in Figs. 3 to 6.

In Figs. 3(a) and (3b), results obtained from the present analysis are compared with those
presented by Rades[6] neglecting the foundation inertia (which in the present analysis is
equivalent to putting g, = 0). Both the cases of Pasternak’s model and Winkler’s model are
compared. To convert the parameters used by Rades[6] into those used in the present
investigation, the mathematical equivalence of Viasov and Leontev’s model[3] with that of
Pasternak’s model is made use of and the parameters A, v and [/L are so chosen as to yield the
values used by Rades for computational purposes. By so doing, the dynamic responses of beams
on Vlasov and Leontev’s foundation model using the above values of A, » and I/L will turn out to
be the same as reported by Rades[6]. The ratio of dynamic deflection at the centre of the beam,
We, to the static deflection at the centre of the beam, W#¥ is graphically shown in Fig. 3(a) as a
function of Q, where Q can be worked out as

Q= V2/A(bo) (44)

Similarly the ratio of dynamic moment at the centre of the beam, M, to the static moment at the
centre of the beam, M¥ is shown in Fig. 3(b) as a function of (1. In these cases (Figs. 3(a) and
3(b)), A =0-5872, I/L =1:1420, v =0-3 and a,=0.

Dynamic responses W, M, Q and G (Eqns. (42)) of a beam with free ends, subjected to a
concentrated dynamic load at centre, P, and taking into account the foundation inertia (ao # 0)
have been presented in Figs. 4(a) to 4(d).
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Fig. 3(a). Dimensionless dynamic deflection vs €}.
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The dynamic responses W and M (Eqns. (43)) of a beam subjected to a uniformly
distributed dynamic load, g. and taking foundation inertia also into account (a,+#0) are
presented in Figs. 5(a) and 5(b). For the same case, the dimensionless dynamic contact pressure,
g (Eqns. (43)) is compared for beams with different end conditions in Fig. 6, to estimate the effect
of end conditions of the beam on the contact pressure distribution.

By putting a, = 0, and b, = 0 in the above analysis solutions to the static case can be obtained.

10. CONCLUSIONS

While the performance of the proposed model in static problems is brought out in Ref.[4],
Figs. 3(a) and 3(b) show the comparative performance of the proposed generalised foundation
model in dynamic analysis. The present responses are in general similar to those reported by
Rades[6}. The present analysis gives higher values for deflections in the initial stages, the first
natural frequency being in between the values obtainable using Winkler’s foundation mode! and



Dynamic response of beams on generalised elastic foundations 27

| 4
l 4 L
O3 T T T T T T T
[ Stotic response b5,20Q-25
| -
-
R o
o5 -
o= 0-50
T
A=18
L = v
07 p— n =086
v=03
a,= 075

Fig. 4(d). Variation of g (dynamic case).

A=1-5
¢
- =h24
v =03
4,075
! t—p i ¢ |
Ofﬁ'iff“iiitffiﬁ*
] ] { i ] 1 1 1 i
. 5,025
w "o bo20-50
30

Fig. 5(a). Variation of W (dynamic case).

Pasternak foundation model (Fig. 3(a)). Regarding bending moments (Fig. 3(b)), the present
analysis also reveals the insufficiency of the Winkler model. The dynamic analysis of beams on
Winkler's foundation completely misses the first natural frequency[6], while the present analysis
picks up the first natural frequency just as Pasternak foundation, the present value being slightly
less than the one reported by Rades[6].

Accounting for the foundation inertia (a, # 0) a few results for the cases of concentrated and
uniformly distributed dynamic loads have been presented in Figs. 4 and 5. The dependance of
dynamic contact pressure distribution on the boundary conditions of the beam is shown in Fig. 6,
taking into account the foundation inertia. As can be expected, the § values are higher in the case
of beams with free ends when compared to beams with simply supported and fixed ends.
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The generalised foundation model presented in this investigation is flexible enough to take
care of all the physical parameters and their variations that might be encountered in practice.
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APPENDIX A

Solutions F., for the free part of foundation (Eq. Q70

The forms of solution for F; from Eq. (27) depend on the nature of the characteristic roots, which in turn depend on the
values of certain physical parameters. The solutions thus obtained should be physically feasible in the sense that the
responses should be bounded as 5 -» =, Rades[6] also fixed certain range of ), up to which only the solutions are feasible.
Referring to Eq. (27):

1. »=0, a’/A* = 0. (Foundation Inertia is neglected). The characteristic toots are of the type £ms, £m,. The physically

feasible solutions are given by Eqns. (32).

2. 0= a2 A*<(1—v)2. (as =0 corresponds to zero foundation inertia),
The characteristic roots are of the type =m,, =m, and the physically feasible solutions are given by Eqns. (30).
3. a,’[A* = (1 - »}{2. Characteristic roots are of the type 20, * m,.
4 (1= 2 < aX A2 <201 - Y1+ 20)/(3 - v).

The roots are of the type, xm,, *im, where i = V-1
21— w)1 4 20)(3 - v) = a) A7, The roots are of the type xm,, +im,, where i = V-1,
L= 14203~ )< ag'fA* < 1. Roots are =m,, =im,, where i = V=1,

. 4017 = 1. The roots are of the type =0, zim,, where i = V-1,

[ S T~ SV )

. ao*/A*> 1. The characteristic roots are of the type %im,. +im., where i = V-1,

Over all the practical ranges of parameters, it can be noted that the characteristic roots are never complex conjugate with
non-zero real part.

In the first two cases the physically feasible solutions have been dealt in detail earlier as the examples quoted essentially
belong to these categories. In the rest of the cases 3 to 8, while it is realised that the feasible solutions cannot be identified
readily as in the first two cases, it seems logical to use the physical properties of symmetry of the problem and boundedness
of responses in writing the feasible solutions. As an example, considering case 8, the general solution for F; can be written as

F; = B, cos myn + B, sin m,n + B; cos man + Bysin uan (A1)

Considering the symmetry of the problem, it seems logical to write the feasible solutions as (by retaining the symmetric
cosine terms only in the solution).

Fy=B,cosm,n+ Bscos mon forn =0
=B, cos myn + By cos muy forp =0 (A2}

Such a situation is reported by Kenney[7] and Weitsman[8]. However they obtained the feasible solutions by
incorporating a fictitious damping term in the differential equation, and identifying the forward wave and backward wave and
then reducing the damping to zero. In their cases, the waves have been observed to be anti-symmetric for certain ranges of
parameters.

Once the feasible solution for F; can be obtained the rest of the analysis follows as already dealt with.



